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1 Introduction

The concept that our universe might be a 4-dimensional hypersurface embedded in a higher-

dimensional universe constitutes an extremely provocative idea, from a theoretical, philo-

sophical and practical point of view.

From a theoretical point of view, the well-known Campbell’s theorem [1, 2] serves as a

ladder to go between manifolds whose dimensionality differs by one. This theorem, which is

valid in any number of dimensions, implies that every solution of the 4D Einstein equations

with arbitrary energy-momentum tensor can be embedded, at least locally, in a solution

of the 5D Einstein field equations in vacuum. It is the backbone of induced-matter theory

(IM) [3], and brings to fruition the philosophy of geometrodynamics [4] in which “matter

and charge may be manifestations of the topology of space1

From a practical point of view, extensions of general relativity to five and more dimen-

sions seem to provide the best route to unification of gravity with interactions of particle

1As Feynman put it: “It would indeed be very beautiful to have Gµ
ν = 0 everywhere, so that, in words

used recently to describe geometrodynamics, matter comes from no matter, and charge comes from no

charge” [4].
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physics [5]–[8]. Braneworld theory (BW) proposes a model where our spacetime is a singu-

lar hypersurface embedded in an empty (no matter sources) 5-dimensional anti-de Sitter

space [9], which might provide a possible solution to the hierarchy problem between weak

and Plank scales.

One important physical problem in higher-dimensional theories is to develop a full

understanding of implications in 4D. Therefore, it is essential to compare and contrast

the effective pictures generated in 4D by different versions of 5-dimensional relativity, like,

e.g., the classical Kaluza-Klein theory with “cylinder condition” (KK) and the two above-

mentioned approaches, where the extra dimension is not assumed to be compactified.

Today, it is well known that IM and BW originate the same effective 4-dimensional

world, despite of the fact that they have different motivation and interpretation [10]. For

example, in cosmological applications, on every 4D hypersurface orthogonal to the extra

dimension IM reproduces, although in different conventions and notation, the generalized

(or modified) Friedmann equation of BW on a Z2−symmetric brane.

The question arises of whether one can establish some connection between cosmological

models constructed under similar conditions in KK, IM, and BW. The aim of this work

is to study this question. In particular, we ask whether models in the “old” Kaluza-Klein

theory can be made compatible with IM and BW, i.e., with the concept that our universe

is a 4D hypersurface embedded in a 5-dimensional world.

We will see that the answer to this question is positive. In our discussion we concen-

trate our attention to a family of KK cosmological models first discovered by Davidson,

Sonnenschtein and Vozmediano [11]. These models share with IM and BW the property

that they are solutions to the Einstein field equations in an empty 5-dimensional space

(5)GAB = k2
(5)Λ(5)γAB , (1.1)

where A,B = 0, 1, 2, 3, 4; k2
(5) is a constant introduced for dimensional considerations, and

γAB is the extended 5D Friedmann-Robertson-Walker (FRW) metric

dS2 = γABdxAdxB = dt2 − A2(t)dΣ2
k − Φ2(t)dy2. (1.2)

Here dΣ2
k is the metric on the unit three dimensional plane (k = 0), hyperboloid (k = −1)

or sphere k = 1, viz.,

dΣ2
k =

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

. (1.3)

In our notation, the Davidson-Sonnenschtein-Vozmediano (DSV) solutions are given by2

A2(t) =































c1 cosh ωt + c2 sinh ωt + 2k
ω2 , for k2

(5)Λ(5) = 3ω2

2 ,

−kt2 + c1t + c2, for k2
(5)Λ(5) = 0,

c1 cos ωt + c2 sin ωt − 2k
ω2 , for k2

(5)Λ(5) = −3ω2

2 ,

(1.4)

2Some typos in the original paper [11] are fixed here.
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Φ(t) = B0

(

dA

dt

)

, (1.5)

where c1, c2, B0 are constants of integration with the appropriate dimensions.3 To study the

effective 4-dimensional world, these authors used the Kaluza-Klein ansatz, which consists in

assuming that the extra dimension is compactified (rolled up to a small size), and identifying

gµν = Φγµν , (1.6)

with the metric of the effective 4-dimensional world [12]. An observer in 4D, who is not

aware of the existence of an extra dimension, interprets the metric gµν as if it were governed

by an effective 4D energy-momentum tensor. For the DSV solutions, the effective isotropic

pressure peff and density ρeff satisfy the “equation of state”

ρeff = peff +
k2
(5)Λ(5)

4πGΦ
, (1.7)

which for Λ(5) = 0 reduces to the familiar stiff equation.

However, this is not the only way to establish the effective 4-dimensional picture. Other

alternatives for dimensional reduction are formulated in induced-matter and braneworld

theories, where the extra dimension is not assumed to be compactified. Since the DSV

solutions are vacuum solutions, it is of theoretical interest to reanalyze their 4-dimensional

interpretation from the perspective of these theories.

In section 2, we sketch the main features of noncompactified theories. We show that,

by means of a simple transformation t ↔ y, from (1.4)–(1.5) one can generate a family

of static 5-dimensional solutions. Then, within the context of IM in the comoving frame,

we demonstrate that the DSV solutions and their static counterparts lead to significantly

different scenarios in 4D. In section 3, we study the 4-dimensional picture measured by an

observer who, instead of being at rest, is moving in a DSV universe. We find that such

an observer can perceive a rich variety of cosmological scenarios, including cosmological

models where the induced matter satisfies the barotropic equation of state. In section 4,

we show that the static DSV models allow us to reproduce the modified, or generalized,

Friedmann cosmological equation of branewold models [13]–[15].

2 Relaxing the Kaluza-Klein ansatz

Modern theories of gravity in 5D introduce two important new ingredients. First, they

do not require the extra dimension to be compact; in principle it can be infinitely large.

Second, a large extra dimension can be either spacelike or timelike; both are physically

admissible (see, e.g., [16] and references therein). In this regard, one should be careful

to discriminate between temporal (spatial) dimensions, which actually have physical units

of time (length); and timelike (spacelike) ones, which merely have timelike (spacelike)

signature [17].

3B0 has dimensions of length. In the first and third solutions c1 and c2 are dimensionless. In the second

solution c1 has dimensions of (length)−1 and c2 is dimensionless

– 3 –
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2.1 Static solutions

An immediate consequence of these new “ingredients” is that the metric

dS2 = dt2 − A2(t)dΣ2
k + ǫB2

0

(

dA

dt

)2

dy2, (2.1)

with timelike extra dimension (ǫ = +1), is also a physically valid solution of the field

equations GAB = k2
(5)Λ(5)γAB. In this case making the transformation t ↔ y and k → ǫk,

from (1.4)–(1.5) we obtain the following set of static solutions

dS2 = γCDdxCdxD = B2
0

(

dA
dy

)2

dt2 −A2dΣ2
k + ǫdy2, (2.2)

where

A2(y) =































c1 cosh ωy + c2 sinhωy + 2ǫk
ω2 , k2

(5)Λ(5) = 3ǫω2

2

−ǫky2 + c1y + c2, for k2
(5)Λ(5) = 0,

c1 cos ωy + c2 sin ωy − 2ǫk
ω2 for k2

(5)Λ(5) = −3ǫω2

2 .

(2.3)

We will show in sections 3 and 4 that these solutions, which we will call static DSV

solutions, may be used to establish a connection between the DSV solutions, the FRW

models of conventional 4D relativity, and the modified Friedmann equation. Although we

are not especially promoting timelike extra dimensions, because they can lead to closed

timelike curves (CTC) and hence allow causality violation,4 for the sake of generality in

our discussion we keep ǫ = ±1.

2.2 Effective gravity in 4D

The effective metric measured by an observer depends on her/his state of motion. The

simplest physical scenario emerges in the rest (also called comoving) frame, which in the

present case means (dxi = dy = 0). In such a frame, the spacetime is recovered by going

onto some hypersurface Σy0 : y = y0 = constant, which is orthogonal to the unit 5D vector

n̂A = Φδ4
A tangent to the extra coordinate. The effective equations for gravity in Σy0 are

obtained from dimensional reduction of the 5-dimensional Einstein field equations, which

is based on Campbell’s theorem. It consists in isolating the 4D part of the relevant 5D

geometric quantities and use them to construct the 4D Einstein tensor (4)Gαβ . For the 5D

metric dS2 = γµνdxµdxν + ǫΦ2dy2 the result is5

(4)Gαβ = 8πG (4)Tαβ ≡ 2

3
k2
(5)

[

(5)Tαβ + ((5)T
4
4 −

1

4
(5)T )gαβ

]

−

ǫ
(

KαλKλ
β − Kλ

λKαβ

)

+
ǫ

2
gαβ

(

KλρK
λρ − (Kλ

λ )2
)

− ǫEαβ,(2.4)

4It has been argued that physics can be compatible with CTC [18, 19]. For theories with timelike extra

dimensions see, e.g., [20]–[28].
5There are five more equations; in the present case they reduce to Eµ

µ = 0 and (4)T
µ

ν;µ = 0.
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where (4)Gαβ is calculated with the 4D metric6 gµν = γµν ;
(4)Tαβ is the effective energy-

momentum tensor (EMT) measured in Σy0;
(5)TAB is the EMT in 5D; ǫ = ±1 depending on

whether the extra dimension is spacelike or timelike; Kµν is the extrinsic curvature of Σy0,

Kαβ =
1

2
Ln̂gαβ =

1

2Φ

∂gαβ

∂y
; (2.5)

Eµν is the projection of the 5D Weyl tensor (5)CABCD orthogonal to n̂A, i.e., “parallel” to

Σy0 , viz.,

Eαβ = (5)CαAβBn̂An̂B = − 1

Φ

∂Kαβ

∂y
+ KαρK

ρ
β − ǫ

Φα;β

Φ
, (2.6)

and Φα ≡ ∂Φ/∂xα. In what follows we denote (4)T 0
0 ≡ ρeff and (4)T 1

1 = (4)T 2
2 = (4)T 3

3 ≡
−peff.

2.3 Interpretation of DSV solutions on Σy0

We now apply the above expressions to the original DSV solutions. Since the metric

in (1.4)–(1.5) is independent of y, the extrinsic curvature Kαβ of hypersurfaces y = y0

is identically zero. Considering that Eµν is traceless, the effective matter in Σy0 can be

interpreted as a mixture of vacuum fluid and (Weyl) radiation. For future purposes we

give the explicit form of the induced matter quantities in Σy0:

ρeff = ρ +
Λ(4)

8πG
, peff = p −

Λ(4)

8πG
, Λ(4) =

3ǫΛω2

4
, p =

ρ

3
, (2.7)

where ǫΛ = (1, 0,−1) for Λ(5) > 0, Λ(5) = 0 and Λ(5) < 0, respectively, and

8πGρ =
3fΛ

4A4(t)
, fΛ =



























ω−2
[

4k2 − ω4(c2
1 − c2

2)
]

, Λ(5) > 0,

c2
1 + 4kc2, Λ(5) = 0,

ω−2
[

ω4(c2
1 + c2

2) − 4k2
]

, Λ(5) < 0.

(2.8)

In cosmological applications, this interpretation seems to be more satisfactory than the one

given by the equation of state (1.7), derived from the Kaluza-Klein ansatz. We note that,

in general, ρ is not necessarily positive, except for k = 0 and Λ(5) ≤ 0. However, if we add

the initial condition A(0) = 0 then ρ ≥ 0 in all three cases, regardless of the choice of k.

Let us now turn our attention to the static solutions (2.2)–(2.3). On every hypersurface

Σy0 the metric functions in (2.2) are constants, and the line element is Minkowskian.

However, the components of the extrinsic curvature (2.5) are not zero, and the matter

variables do not vanish in general. In fact, in all three cases, the effective matter induced

in Σy0 is given by

peff = −ρeff

3
, 8πGρeff =

3k

A2(y0)
. (2.9)

6Various versions of IM can be found in the literature for different definitions of the physical metric in

4D (see, e.g., [29] and references therein).
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Thus, the relationship between the effective quantities is similar to the equation of state

ρ = −3p for “nongravitating matter”, which has been discussed in a number of differ-

ent contexts [5, 30]–[33]. The nonvanishing components of the Riemann tensor on this

hypersurface are

R1313 = R1212 sin2 θ =
1 − kr2

r2
R2323 = −kA2(y0)r

2 sin2 θ

1 − kr2
. (2.10)

Thus, on Σy0 the effective spacetime is empty and Riemann-flat only for k = 0. A similar,

but not identical, non-vacuum Minkowskian spacetime is discussed in [34].

3 Generating spacetime on a dynamical hypersurface

Thus, when we identify our spacetime with some hypersurface y = y0 = constant in a DSV

universe, the effective matter in Σy0 is restricted to behave either as a radiation-like fluid

or as nongravitating matter. Both scenarios are unsatisfactory if we desire to obtain more

general cosmologies. The problem is that the embedding y = y0 is too rigid.

A more “flexible” approach, that respects the spatial homogeneity and isotropy of

FRW models, is to consider that 4D observers are at rest only in 3D (dxi = 0), but moving

in 5D. That is we relax the condition dy = 0 of section 2.2 and assume that y = y(t), or in

parametric form

t = S(τ), y = Y (τ), (3.1)

where τ is the proper time. In this approach our spacetime is recovered on a dynamical

4D hypersurface, which we will denote as ΣY (τ), with local coordinates (τ, r, θ, φ). In this

section we will see that an observer living in ΣY (τ), who is unaware of the motion through an

empty 5D-dimensional universe, will interpret the expansion or contraction of the universe

as if it were governed by an effective matter satisfying some equation of state, which is not

necessarily restricted to be ρ = 3p or ρ = −3p.

We consider a foliation of the 5D-dimensional manifold such that (3.1) is itself a hy-

persurface of the foliation. Then, for the 5D cosmological line element

dS2 = N2(t, y)dt2 − A2(t, y)dΣ2
k + ǫΦ2(t, y)dy2, (3.2)

the metric induced on every hypersurface of the foliation is (hereafter Ẋ ≡ dX/dτ ; Xt ≡
dX/dt; X ′ ≡ dX/dy)

ds2 =
[

N2(t, y)Ṡ2 + ǫΦ2(t, y)Ẏ 2
]

dτ2 − a2(τ)dΣ2
k. (3.3)

On ΣY (τ) this metric has to take the usual FRW form. Therefore we require

[

N2(t, y)Ṡ2 + ǫΦ2(t, y)Ẏ 2
]

t=S(τ),y=Y (τ)

= 1, a(τ) = A(t, y)|t=S(τ),y=Y (τ)
, (3.4)

which ensures that τ is the proper time. It also shows that the functions S and Y are

not independent, meaning that the state of movement of ΣY (τ) is parameterized just by

– 6 –
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one function of the proper time τ . The unit vector n̂A normal to the foliation, and the

four-velocity vector uA tangent to the foliation can be written as

n̂A =
s√

1 + ǫV 2
(−V N, 0, 0, 0,Φ) , n̂A =

s√
1 + ǫV 2

(

−V

N
, 0, 0, 0,

ǫ

Φ

)

,

uA =
1√

1 + ǫV 2
(N, 0, 0, 0, ǫΦV ) , uA =

1√
1 + ǫV 2

(

1

N
, 0, 0, 0,

V

Φ

)

. (3.5)

Here n̂An̂A = ǫ; uAuA = 1; nAuA = 0; s = ±1 determines the orientation of the normal,7

and V is the coordinate velocity of ΣY (τ). This follows from the fact that the displacement

n̂AdxA must vanish on every hypersurface of the foliation. Therefore,

V =
Φdy

Ndt
=

ΦẎ

NṠ
=

ΦẎ
√

1 − ǫΦ2Ẏ 2
, (3.6)

where we have used (3.4) and assumed Ṡ > 0.

3.1 Interpretation of DSV solutions on ΣY (τ)

We now apply the above general formulate to elucidate what kind of 4D cosmological

models can be obtained as projections of DSV solutions on a moving hypersurface ΣY (τ).

3.1.1 Time-dependent DSV solutions

First, let us show that the effective matter induced on ΣY (τ) is no longer pure Weyl radiation

as it occurs on Σy0, (2.7)–(2.8). In fact, the extrinsic curvature of the surface ΣY (τ) is in

general non-zero, because n̂0 ∼ V 6= 0. In particular, for the DSV solutions (1.4)–(1.5)

K0
0 = −sB0At

[

Ÿ

Ṡ
+

AttẎ

At

]

, K1
1 = K2

2 = K3
3 = −sB0A

2
t Ẏ

A
, (3.7)

K04 and K44 are obtained from KABn̂B = 0. Substituting in (2.4) we find that, apart from

the Weyl radiation given by Eµν , there are a number of additional terms which do not cancel

out, but vanish when Ẏ = 0 (V = 0). This is a general result valid for any 5D metric with

no-dependence of the extra y coordinate. It uncovers the misleading nature of the notion,

frequently found in the literature, that “radiation is the only kind of matter one can obtain

in the induced-matter interpretation as long as the cylinder condition8 is in place.”

We now proceed to develop a general expression for the energy density induced on

ΣY (τ). To this end we use (3.4), which in the present case reads
[

Ṡ2 − B2
0A2

t Ẏ
2
]

|t=S(τ)

= 1, a(τ) = A(S(τ)); (3.8)

obtain S as a function of a(τ) from (1.4); calculate Ṡ = ȧ(dS/da), and substitute ȧ2 =

8πGρeffa2/3 − k. The result is

B2
0A

2
t Ẏ

2 = Ṡ2 − 1 =
4[8πGρeff − 3ǫΛω2/4]a4(τ) − 3fΛ

3δΛ
, δΛ ≥ 0, (3.9)

7For s = 1 (s = −1) the displacement nAdxA, for fixed t, is in the increasing (decreasing) direction of y.
8Kaluza’s cylinder condition sets the derivatives with respect to the additional coordinate to zero.
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where ǫΛ and fΛ are the coefficients defined in (2.7)–(2.8), and

δΛ =



























fΛ − 4ka2 + ω2a4, k(5)Λ(5) = 3ω2

2 ,

fΛ − 4ka2, Λ(5) = 0,

fΛ − 4ka2 − ω2a4, k(5)Λ(5) = −3ω2

2 .

(3.10)

The condition δΛ ≥ 0 is necessary to ensure that S(τ) is a real function. In principle,

fΛ can have either sign, but models where a can reach a = 0 require fΛ ≥ 0. Finally,

from (1.5), (3.6) and (3.8) we get the desired formula, viz.,

8πGρeff = Λ(4) +
3fΛ

4a4
+

V 2

1 − V 2

(

3δΛ

4a4

)

. (3.11)

We note that when V = 0 we recover (2.7)–(2.8). The last term is always positive because

|V | < 1 (Ẏ 2 ≥ 0), and in general is not radiation-like because δΛ is a function of a.

In principle, one can find the motion of ΣY (τ) for any given equation of state. The

algorithm is as follows: from the field equations find a(τ); use (1.4) to get S as a function

of a(τ); substitute into (3.8) to obtain V (τ) and Y (τ); finally, the range of applicability of

the model is set by the condition Ẏ 2 ≥ 0.

As an illustration, let us consider the equation of state peff = wρeff with w = constant,

which implies ρ ∼ 1/a3(1+w). Substituting this into (3.9) we find that Ẏ 2 ≥ 0 is satisfied,

in the whole range of a, if (Λ(5) = 0, w = 1/3) or (Λ(5) < 0, w ≥ 1/3); in any other case the

applicability is restricted to certain portions of the evolution. For example, in the case of

spatially flat models with Λ(4) = 0 for which a(τ) ∼ τ2/3(w+1), we find S = Cτ4/3(w+1), and9

V 2 = 1 − 9(w + 1)2τ2(3w−1)/3(w+1)

16C2
. (3.12)

The model works well (0 ≤ V 2 ≤ 1) either in the very early universe (1/3 < w ≤ 1) or

at “late” times (0 ≤ w < 1/3). An interesting by-product of the discussion is that V =

constant for w = 1/3. Namely, V = 0 for pure Weyl (geometric) radiation, while V =

constant 6= 0 for a mixture of Weyl radiation, photons and ultra-relativistic matter.

Another approach for constructing 4D cosmological models from (1.4)–(1.5) consists

in prescribing the motion of ΣY (τ). The problem with this is that we have no physical ar-

guments in support of any particular choice. The only criterion seems to be “mathematical

simplicity”. Here we just show an interesting representative example, which arises from

the assumption

S(τ) = τ + Cτ4/3(w+1), (3.13)

with 0 ≤ τ < ∞ and C = constant > 0. In this case Ẏ 2 ≥ 0 (|V | ≤ 1) in the whole range

of τ , for all w ∈ (−1, 1]. In particular, for w = 0, Ṡ|τ→0 → 1 in the early universe, which by

virtue of (3.8) implies Y|τ→0 → constant, i.e., in the early universe ΣY (τ) → Σy0 . Conse-

quently, at early times the model reduces to a radiation filled universe analogous to the one

considered in (2.7), while at late times the effective matter on ΣY (τ) behaves like cosmolog-

ical dust. Similar cosmologies can be generated on ΣY (τ) from the other solutions in (1.4).

9Please note that V is not the speed of light c. Thus V = 1 does not mean that ΣY (τ) is light-like.
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3.1.2 Static DSV solutions

We now consider the case where our spacetime is a dynamical hypersurface moving in the

static background (2.2)–(2.3). Here, in addition to the freedom in the choice of Y (τ) (or

S(τ)), we also have a freedom in the signature of the extra dimension. In this case the

functions S and Y must satisfy

B2
0A′2Ṡ2 + ǫẎ 2 = 1, a(τ) ≡ A(Y (τ)), (3.14)

which follow from (3.4), and assure that the spacetime metric induced in ΣY (τ) has the usual

FRW form. The matter induced on ΣY (τ) is determined by the Einstein equations, namely

8πG

3
ρeff =

A′2Ẏ 2

A2
+

k

A2
,

4πG

(

peff +
ρeff

3

)

= −A′′Ẏ 2

A − A′Ÿ

A . (3.15)

The last equation shows that ρeff = −3peff, when Y = constant. However, there is a

another solution, namely A(Y (τ)) ∼ τ , which generates Milne’s universe (the correspond-

ing Y and S are obtained from (2.3) and (3.14), respectively). For any other choice the

effective matter in ΣY (τ) behaves as “regular” gravitating matter.

Again, we can derive a general expression for ρeff analogous to (3.11). Although we

omit the formulae, for all three solutions in (2.3) we find that the matter induced on a

dynamical hypersurface is compatible with the barotropic equation of state, in the whole

range of τ , and w 6= 1/3, provided Λ(5) ≤ 0, which is equivalent to ǫ = −1 and ǫ = 1 in

the hyperbolic and trigonometric solution, respectively. For w = 1/3, the extra dimension

can be either spacelike or timelike. As an illustration, let us consider spatially flat models

with Λ(5) = 0. In this case

a2(τ) = c1Y (τ) + c2 = (C1τ + C2)
4/3(w+1) , (3.16)

where C1 and C2 are constants of integration. Substituting into (3.14) we get

B2
0c2

1

4
Ṡ2 = a2 − 16ǫC2

1a3(1−w)

9(1 + w)2c2
1

. (3.17)

Since Ṡ2 > 0, and 0 ≤ a(τ) < ∞, this expression shows that the extra dimension must be

spacelike (ǫ = −1) for any w 6= 1/3. For w = 1/3, it can be either spacelike or timelike,

depending on the choice of the constants.

Another simple example that demonstrates the diversity of cosmological scenarios,

arises from the observation that setting Ṡ = 1 in (3.8) requires Y = Y0, which gives back

the conventional models with radiation-like effective matter (2.7). In static DSV solutions

the assumption Ṡ = 1 is inconsistent with Y = Y0, but generates an ample variety of

collapsing and bouncing cosmological models. In fact, the scale factor resulting from the

integration of (3.14) can be written in the parametric form

a =
B0c1

2
sin η, τ − τ0 =

B2
0c1

4

(

η − 1

2
sin 2η

)

, for ǫ = −1, (3.18)
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where τ0 is a constant of integration, which can be set equal to zero. Thus, despite the

fact that the universe is spatially flat, for ǫ = −1 it recollapses in a finite proper time: a(τ)

grows from zero at τ = 0 (η = 0) to a maximum value a = B0c1/2, which is reached when

τ = B2
0c1π/8 (η = π/2), and decreases again to zero at τ = B2

0c1π/4. For small values of

a, we assume η ≪ 1. Then a ∼ η, τ ∼ η3, so that a ∼ τ1/3, which corresponds to a fluid

with a stiff equation of state, i.e., peff = ρeff.

In a similar way, for ǫ = 1 the solution can be written as

a =
B0c1

2
cosh η, τ − τ0 =

B2
0c1

4

(

η +
1

2
sinh 2η

)

, for ǫ = 1. (3.19)

Here the scale factor changes monotonically, increasing from a = B0c1/2, at τ = 0 (η = 0),

to infinity for τ → ∞ (η → ∞). For large values of τ we find a ∼ τ1/2, which corresponds

to radiation, ρeff = 3peff.

To sum up, in this section we have shown that an observer riding in a hypersurface

ΣY (τ) can perceive a rich variety of cosmological scenarios, including cosmological models

where the induced matter satisfies the barotropic equation of state, not only radiation-like

or nongravitating matter.

4 Our universe as a moving brane in a static DSV universe

In the last section, within the context of IM, we have obtained cosmological models in 4D as

projections of the 5-dimensional DSV solutions on a moving hypersurface ΣY (τ). The aim

of this section is to extend the discussion to embrace the so-called braneworld cosmological

models. In these models gravity propagates in all 5-dimensions, whereas particles and

fields are confined to a singular 4D hypersurface (the brane), thereby accounting for their

relatively greater strength.

The metric gAB induced on the hypersurfaces of the foliation, which is defined by the

orthonormal vectors (3.5), is given by

gAB = γAB − ǫn̂An̂B, gABn̂B = 0. (4.1)

Thus, using (3.2) and (3.5) we obtain

g00 =
N2

1 + ǫV 2
gij = γij,

g04 = ǫ

(

V

N

)

g00, g44 =

(

V

N

)2

g00, (4.2)

where, from (2.2)

N ≡ B0

(

dA
dy

)

. (4.3)
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The extrinsic curvature is

K00 = s
ǫN2

(1 + ǫV 2)3/2

[

N ′

N
− ǫV V ′

1 + ǫV 2

]

,

K1
1 = K2

2 = K3
3 = s

ǫA′

A
√

1 + ǫV 2
,

K04 = ǫ

(

V

N

)

K00, K44 =

(

V

N

)2

K00, (4.4)

with trace

K =
sǫ√

1 + ǫV 2

[

N ′

N
+

3A′

A − ǫV V ′

1 + ǫV 2

]

. (4.5)

In the present case the coordinate velocity (3.6) reduces to V = Ẏ /
√

1 − ǫẎ 2. Therefore,

in the above equations

√

1 + ǫV 2 =
1

√

1 − ǫẎ 2
, V V ′ =

Ÿ

(1 − ǫẎ 2)2
, (4.6)

where we have used that V ′ = V̇ /Ẏ [34].

4.1 Matter on the brane

The metric gAB is continuous across the brane but there is a jump in the extrinsic curvature

(KAB |s=1 = −KAB |s=−1). Israel’s boundary conditions [35] relate this jump to the brane

energy-momentum tensor, viz.,

TAB + σgAB = − 2ǫ

k2
(5)

(KAB − gABK) , (4.7)

where KAB = KAB |s=+1; σ is the tension of the brane, which is interpreted as the vacuum

energy density, and TAB represents the energy-momentum tensor of ordinary matter in the

brane. For perfect fluid it is

TAB = (ρ + p)uAuB − pgAB , (4.8)

where ρ and p are the energy density and isotropic pressure measured by an observer with

velocity uA.

If we substitute (2.3), (4.3), (4.6) into (4.7)–(4.8), and set y = Y (τ), then we obtain

the braneworld matter in terms of the embedding function Y (τ), and its first and second

derivatives. However, in cosmological models, what we need is to find explicit expressions

relating the matter in 4D to the dynamics of the scale factor a(τ). To accomplish this goal

we have to specify Y as a function of a(τ).

1. From the first solution in (2.3) we obtain

cosh ωY =
c1[ω

2a2(τ) − 2kǫ] − c2∆h

ω2(c2
1 − c2

2)
, (4.9)

with ∆h =
√

[ω2a2(τ) − 2kǫ]2 − ω4(c2
1 − c2

2). The expression for sinh ωY is obtained

by changing c1 ↔ c2 in (4.9), but keeping ∆h. We note that cosh ωY and sinhωY

remain finite for c1 = c2.
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2. From the second solution in (2.3) we get

Y (τ) =
ǫ

2k

{

c1 −
√

c2
1 + 4ǫk[c2 − a2(τ)]

}

, k 6= 0. (4.10)

For k = 0, Y (τ) = [a2(τ) − c2]/c1.

3. Finally, we note that the third solution in (2.3) is formally obtained from the first

one under the substitution ω → iω, c2 → ic2. Therefore we have

cos ωY =
c1[ω

2a2(τ) + 2kǫ] − c2∆t

ω2(c2
1 + c2

2)
, (4.11)

where ∆t =
√

ω4(c2
1 + c2

2) − [ω2a2(τ) + 2kǫ]2. The expression for sin ωY is obtained

from this equation by changing c1 → c2, c2 → −c1.

Substituting (4.9)–(4.11) into the original equations for braneworld matter in terms of Y (τ),

we obtain (to simplify the presentation we omit cumbersome intermediate calculations)

3

(

ȧ

a

)2

=







































3ǫω2

4 − ǫk4
(5)

12 (ρ + σ)2 − 3k
a2 +

3ǫ[4k2−(c21−c22)ω
4]

4ω2a4 , for k2
(5)Λ(5) = 3ǫω2

2 ,

− ǫk4
(5)

12 (ρ + σ)2 − 3k
a2 + 3ǫ

a4

(

c21
4 + ǫkc2

)

, for k2
(5)Λ(5) = 0,

−3ǫω2

4 − ǫk4
(5)

12 (ρ + σ)2 − 3k
a2 − 3ǫ[4k2−(c21+c22)ω

4]
4ω2a4 , for k2

(5)Λ(5) = −3ǫω2

2 .

(4.12)

By means of direct calculation we have checked that the three models satisfy the conser-

vation equation

(ρ̇ + σ̇) + 3
ȧ

a
(ρ + p) = 0, (4.13)

so we need not to have an explicit expression for (p − σ). However, it may be worth

emphasizing that this conservation equation holds regardless of the choice of functional

dependence of σ(τ), although it is usually taken as σ = σ0 = constant.

4.1.1 The generalized Friedmann equation

Following a notation that now is standard, the above solutions can be written as

3

(

ȧ

a

)2

= Λ(4) + 8πGρ − 3k

a2
−

ǫk4
(5)

12
ρ2 +

C
a4

(4.14)

where

8πG = −
ǫk4

(5)σ

6
, Λ(4) =



































3ǫ
4

[

ω2 − 1
9k2

(5)σ
2
]

, for k2
(5)Λ(5) = 3ǫω2

2 ,

−ǫ
k4
(5)

σ2

12 , for k2
(5)Λ(5) = 0,

−3ǫ
4

[

ω2 + 1
9k2

(5)σ
2
]

, for k2
(5)Λ(5) = −3ǫω2

2 .

(4.15)
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and

C =



































3ǫ[4k2−(c21−c22)ω4]
4ω2 , for k2

(5)Λ(5) = 3ǫω2

2 ,

3ǫ(c21+4ǫkc2)
4 , for k2

(5)Λ(5) = 0,

−3ǫ[4k2−(c21+c22)ω4]
4ω2 , for k2

(5)Λ(5) = −3ǫω2

2 .

(4.16)

The first three terms in the r.h.s. of (4.14) give the standard cosmology, while the fourth and

fifth terms are local and non-local higher dimensional modifications to general relativity,

respectively. In particular, the term C/a4 can be interpreted as an effective (Weyl) radiation

coming from the bulk to the brane. The first solution in (4.14)–(4.15) with ǫ = −1 is in

agreement with the well-known generalized Friedmann equation [13]–[15], which has widely

been used and discussed in the braneworld literature. In this equation one can always fine-

tune the parameters ω and σ is such a way as to set the 4D effective cosmological constant

Λ(4) equal to zero.

However, this is not so for the second and third solutions in (4.14)–(4.15). For the

solution with Λ(5) = 0 this is not surprising. But, in the third solution Λ(4) cannot be set

equal to zero either, despite of the fact that Λ(5) 6= 0.

4.2 Consistency relations for the embedding

First, we have to verify the positivity of Ṡ2. In fact, from (3.17) we have learned that Ṡ2 is

not automatically positive; in principle the requirement Ṡ2 > 0 may lead to some specific

physical restrictions. In the present case one can show that Ṡ2 > 0, for all three solutions,

without imposing restrictions whatsoever.

Indeed, from (3.14) it follows that B2
0A′2Ṡ2 = (1−ǫẎ 2). Now we use (4.9), (4.10), (4.11)

to obtain Ẏ in terms of a and ȧ. Next, we eliminate ȧ in Ẏ by utilizing (4.12). After a

long but straightforward calculation we get

B2
0A′4Ṡ2 =

k2
(5)

36
(ρ + σ)2 a2(τ), (4.17)

for the three cases, regardless of the choice of ǫ, k and C.

Second, we have to make sure that Y (τ) is a real function for all values of τ . This

requires the quantities under the roots in (4.9), (4.10) and (4.11) to be non-negative.

Using (4.16), this condition can be expressed as

ω2a4 − 4kǫa2 +
4ǫC
3

≥ 0 , for k2
(5)Λ(5) =

3ǫω2

2
,

ǫ
[

C − 3ka2
]

≥ 0 , for k2
(5)Λ(5) = 0,

ω2a4 + 4kǫa2 − 4ǫC
3

≤ 0 , for k2
(5)Λ(5) = −3ǫω2

2
. (4.18)

These equations, impose geometrical constraints on the evolution of the scale factor a,

for every given set (ǫ, k, C). They indicate what kind of braneworld cosmological models

are, in principle, compatible with the embeddings under consideration. However, physical
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requirements, as the energy conditions on ρ and p and ȧ2 ≥ 0, demand more stringent

constraints on the evolution of the scale factor.

4.2.1 Possible cosmological scenarios

We now proceed to examine, in some detail, the 4D cosmological models allowed by (4.18)

when the extra dimension is spacelike (ǫ = −1).

The models with k2
(5)Λ(5) = −3ω2/2 are specially interesting because, as we mentioned

above, they correspond to the generalized Friedmann equation discussed in braneworld

cosmologies [13]–[15]. In this case the inequality ω2a4 + 4ka2 − 4C/3 ≥ 0 has several

solutions corresponding to the various values of C and k:

1. k = −1: For −∞ < C ≤ −3/ω2, there are no restrictions on a, i.e., the above

inequality is satisfied for all values of a. For −3/ω2 < C < 0, the allowed range of a

is (assuming a positive) either

0 ≤ a(τ) ≤
√

2

|ω|
(

1 −
√

1 + ω2C/3
)1/2

, or a(τ) ≥
√

2

|ω|
(

1 +
√

1 + ω2C/3
)1/2

.

(4.19)

For C ≥ 0, a is restricted to the region defined by the second inequality.

2. k = (0, 1): For C ≤ 0, there are no restrictions on a. For C > 0 we obtain

a(τ) ≥
(

4C/3ω2
)1/4

, and a(τ) ≥
√

2

|ω|
(

√

1 + ω2C/3 − 1
)1/2

, (4.20)

for k = 0 and k = 1, respectively. We note that a(τ) can never reach zero, i.e. there

is no big-bang, unless C = 0.

Summing-up, the case where k2
(4)Λ(5) = −3ω2/2 allows recollapsing, bouncing and

ever-expanding cosmological models. It is not difficult to see that similar scenarios are

possible when Λ(5) = 0. However, for k2
(4)Λ(5) = 3ω2/2 all the models are recollapsing.

Let us now examine the physics in the bulk. A simple inspection of (2.2)–(2.3) shows

that gtt(y) = ∞ at A(y) = 0. To analyze this in more detail we calculate the Kretschmann

scalar I = RABCDRABCD. We obtain

I = 40α2 +
72β2

A8
, (4.21)

where

α =

(

ω2

4
, 0, −ω2

4

)

, β =
4C
3

=

[

ω4(c2
1 − c2

2) − 4k2

4ω2
,

4kc2 − c2
1

4
, −ω4(c2

1 + c2
2) − 4k2

4ω2

]

,

(4.22)

for k2
(5)Λ(5) = −3ω2/2; k2

(5)Λ(5) = 0 and k2
(5)Λ(5) = 3ω2/2, respectively. The above suggests

the introduction of the dimensionless coordinate z, viz.,

z = A. (4.23)
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In terms of z the static DSV solutions (2.2)–(2.3), with ǫ = −1, become

dS2 = B2
0

(

k + αz2 − β

z2

)

dt2 − dz2

(k + αz2 − β/z2)
− z2dΣ2

k, (4.24)

which is the five-dimensional analogue of the Schwarzschild-de Sitter spacetime. It shows

that for β = 0 (C = 0) the bulk is singularity-free; it is either dS5 or AdS5, depending on

whether α < 0 or α > 0. However, for β 6= 0 the bulk is singular at z = 0. For several

values of the constants, the singularity is covered by a horizon located at z = zh.

For α > 0

z2
h =



























√

c2
1 − c2

2 − 2/ω2, k = 1,

√

c2
1 − c2

2, k = 0,

√

c2
1 − c2

2 + 2/ω2, k = −1.

(4.25)

Alternative formulas for z2
h can be obtained by using (4.22) for expressing

√

c2
1 − c2

2 in

terms of C. We find that z2
h > 0 requires C > 0 for k = (0, 1) and C > −(3/4ω2) for

k = −1. For these parameters the scale factor a(τ) can never vanish because it is bounded

from bellow. A similar situation occurs for α = 0 and k = 1.

Our analysis shows that ever-expanding big-bang cosmological models on the effective

4D brane require α ≥ 0 (Λ(5) ≤ 0) and C = 0 (β = 0), which in turn, by virtue of (4.21),

demand the bulk to be free of singularities (not a black hole in 5D). In this context, the

singularity in 4D can be interpreted as a consequence of the topological separation of our

universe from the 5D bulk [36].

5 Summary

We have studied the classical Davidson-Sonnenschtein-Vozmediano cosmological solutions,

originally obtained and interpreted in the context of 5-dimensional Kaluza-Klein theory

with cilindricity, where the effective metric in 4D is constructed by a factorization tech-

nique (1.6). Nowadays, such a factorization is not required and the extra dimension is not

assumed to be compactified. The two versions of 5D relativity in vogue, namely induced

matter theory and membrane theory, employ a 5D Kaluza-Klein type of metric but identify

our spacetime with some 4D hypersurface embedded in 5D.

In section 2, by employing Campbell’s theorem, which is the fundamental mathematical

support of induced-matter theories, we analyzed the physics induced on a 4D hypersurface

y = y0 = constant. Also, exploiting the symmetry of the 5D metrics, we constructed

the static counterpart to Davidson-Sonnenschtein-Vozmediano solutions. The equations of

state of the matter induced in 4D is ρ = 3p in the FRW case, and ρ = −3p in the static

case, corresponding to radiation-like and nongravitating matter, respectively.

In section 3 we considered the most general embedding compatible with spatial homo-

geneity and isotropy. The spacetime was identified with a dynamical hypersurface ΣY (τ)

defined by one function of the proper time. We found that, an observer living in ΣY (τ),

who is unaware of her/his motion through an empty 5-dimensional universe, will interpret
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the scale factor a(τ) as if it were governed by an effective matter satisfying some equation

of state, which is not necessarily restricted to be radiation-like or nongravitating. In fact,

we discussed a number of cosmological scenarios, which include ever-expanding, collapsing

and bouncing models, with different equations of state including the barotropic one.

In section 4 we used the braneworld paradigm to embed our spacetime as a dynam-

ical 4D hypersurface in a static DSV universe. We considered three possible cases, viz.,

k2
(4)Λ(5) = 3ǫω2/2, Λ(5) = 0, k2

(4)Λ(5) = −3ǫω2/2, which require different consistency rela-

tions for the embedding. As a consequence, although the generalized Friedmann equation

in 4D, looks the same in all cases, they represent distinct physical scenarios. The most no-

torious difference is between the cases with k2
(4)Λ(5) = 3ǫω2/2 and k2

(4)Λ(5) = −3ǫω2/2. The

first case, which for ǫ = −1 gives back previous results in the literature [13]–[15], is compat-

ible with a wide range of cosmological and Λ(4) can be set equal to zero. The second case,

however, is compatible only with recollapsing models and Λ(4) cannot be set equal to zero.

In conclusion, here we have obtained a number of 4D cosmological models as projections

of DSV cosmological solutions on some 4-dimensional hypersurface. This is the first time

in the literature that these solutions are used in a systematic way to provide a different

formulation of 4D cosmologies. Therefore, our approach is complementary to the usual

formalism employed in IM [3] and BW [13]–[15], and shows that Davidson-Sonnenschtein-

Vozmediano solutions are compatible with the notion that our universe can be an evolving

4D hypersurface embedded in a 5-dimensional world.
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